Fundamental Algorithms 7 - Solution Examples

Exercise 1 (Hash Function)

Let $n=1000$. Compute the values of the hash function $h(k)=\lfloor n(a k-\lfloor a k\rfloor)\rfloor$ for the keys $k \in$ $\{61,62,63,64,65\}$, using $a=\frac{\sqrt{5}-1}{2}$. What do you observe?

Solution:

$$
\begin{array}{l|ccccc}
k & 61 & 62 & 63 & 64 & 65 \\
\hline h(k) & 700 & 318 & 936 & 554 & 172
\end{array}
$$

The hash function is "non-smooth": similar entries lead to different hash values.

Exercise 2 (Hash Table)

Let T by a hash-table of size 9 with the hash function $h: U \rightarrow\{0,1, \ldots, 8\}, k \mapsto k \bmod 9$. Write down the entries of T after the keys $5,28,19,15,20,33,12,17$, and 10 have been inserted. Use chaining to resolve collisions.

Solution:

i	0	1	2	3	4	5	6	7	8
$T[i]$	[]	$[10,19,28]$	$[20]$	$[12]$	[]	$[5]$	$[33,15]$	[]	$[17]$

The []-notation denotes the lists that are stored in each hash table slot.

Exercise 3 (Open Hash)

Now, let T be a hash table of size 11, using open addressing with the following hash functions

1. $h(k, i):=(k+i) \bmod 11$
2. $h(k, i):=\left(k \bmod 11+2 i+i^{2}\right) \bmod 11$
3. $h(k, i):=(k \bmod 11+i \cdot(k \bmod 7+1)) \bmod 11$

Insert the keys $5,19,27,15,30,34,26,12$, and 21 (in that order) and state which keys require the longest probe sequence in the resulting tables.

Solution:

1. Linear probing:

i	0	1	2	3	4	5	6	7	8	9	10
$T[i]$		34	12		15	5	27	26	19	30	21

Longest probe sequence is 4 (for 26).
2. Quadratic probing:

i	0	1	2	3	4	5	6	7	8	9	10
$T[i]$	30	34	27		15	5		26	19	12	21

Longest probe sequence is 2 (for 27 and 12).
3. Double hashing probing:

i	0	1	2	3	4	5	6	7	8	9	10
$T[i]$	30	27	12	21	15	5		34	19		26

Largest probe sequences is 5 (for 34 and 21).

Note: Contrary to this example, double hashing usually beats linear or quadratic probing. Moreover, using a larger table for open addressing is recommended.

Exercise 4 (Hashing the Universe)

Consider a universe U of keys, where $|U|>m n$, and a hash function $h: U \rightarrow\{0,1, \ldots, n-1\}$. Show that there are at least m elements of U which are mapped to the same hash value, i.e. there is a subset A of U with $|A|=m$ and $h\left(a_{1}\right)=h\left(a_{2}\right)$ for all $a_{1}, a_{2} \in A$.

Solution:

Assume the opposite, i.e. that for all n values of the hash function the number of elements in U that are hashed to this value is smaller than m. As a consequence, the number of elements that are hashed to any of the n keys is smaller than $n m$. This contradicts the fact that U is considered to have more than $n m$ elements. Hence, our assumption has to be false, and there has to be at least one subset containing at least m elements.

